26.04.1986 - 01:23 - Tschernobyl

    • Offizieller Beitrag

    Vor ziemlich genau 20 Jahren und einem Tag ereignete sich in der damals noch sowjetischen Ukraine im Atomkraftwerk von Tschnernobyl der bisher größte nukleare SuperGAU der Menschheitsgeschichte. Auslöser waren Bedienungsfehler, menschliches Versagen und die besonders sichere russische Technik. Die Auswirkungen des freigesetzten radioaktiven Materiels war noch bis nach Deutschland, vor allem Bayern und BaWü, vorgedrungen...

    Unfallhergang (Quelle: Wikipedia)

    In einem anstehenden Experiment sollte geprüft werden, ob die Leistung der bei der Abschaltung langsam auslaufenden Turbine die Zeit bis zum Anlaufen von Dieselgeneratoren (etwa 40–60 Sekunden) überbrücken kann. Ein früherer Versuch im Block 3 des Kraftwerks war zuvor gescheitert, weil die Spannung zu schnell absank. Nun sollte der Versuch mit einem verbesserten Spannungsregler wiederholt werden. Diesen erneuten Versuch führte man bei einer Routineabschaltung des Reaktors durch.

    25. April 1986, 1:00: Als erster Schritt sollte die Leistung des Reaktors von ihrem Nennwert bei 3.200 Megawatt thermisch (=MWth) auf 1.000 MWth reduziert werden, wie bei einer Regelabschaltung üblich. Um 13:05 wurde auf Anweisung des Lastverteilers in Kiew die Leistung bei 1.600 MWth stabilisiert.

    23:10: Die Leistung wurde weiter abgesenkt. Nach dem Schichtwechsel um 24:00 schaltete die neue Mannschaft um 00:28 bei 500 MWth die automatische Reaktorleistungsregelung um. Durch einen Bedienfehler, durch den der Sollwert für die Gesamtleistungsregelung anscheinend nicht richtig eingestellt wurde, oder auf Grund eines technischen Defekts sank die Leistung weiter bis auf nur etwa 30 MW.

    Wie nach jeder Leistungsabsenkung erhöhte sich vorübergehend die Konzentration des Isotops Xenon-135 im Reaktorkern („Xe-Vergiftung“). Da Xenon-135 die für die nukleare Kettenreaktion benötigten Neutronen sehr stark absorbiert, nahm aufgrund der Konzentrationszunahme die Leistung des Reaktors immer weiter ab. Als die Betriebsmannschaft am 26. April 1986 um 00:32 Uhr die Leistung des Reaktors durch weiteres Ausfahren von Regelstäben wieder anheben wollte, gelang ihr das infolge der mittlerweile aufgebauten Xe-Vergiftung nur bis zu etwa 200 MW oder 7 % der Nennleistung.

    Obwohl der Betrieb auf diesem Leistungsniveau unzulässig war (laut Vorschrift durfte der Reaktor nicht unterhalb von 20 Prozent der Nennleistung betrieben werden) und sich zu diesem Zeitpunkt außerdem viel weniger Regelstäbe im Kern befanden, als für einen sicheren Betrieb notwendig waren, wurde der Reaktor nicht abgeschaltet, sondern das Signal zum Beginn des Testlaufs gegeben.

    26. April 1986, 01:03 bzw. 01:07: Um die zusätzliche Last des bei Turbineneinlassventilschließung anfahrenden Kernnotkühlsystems zu simulieren, wurden nacheinander zwei zusätzliche Hauptkühlmittelpumpen in Betrieb genommen. Infolge des erhöhten Kühlmitteldurchsatzes nahm der Dampfblasengehalt im Reaktorkern weiter ab. Die Reaktivitätsabnahme führte zum Herausfahren weiterer Regelstäbe, um die Leistung zu stabilisieren. Dies wäre der letzte Zeitpunkt gewesen, an dem man den Reaktor noch durch eine Notabschaltung hätte retten können.

    01:19: Zur Stabilisierung des fallenden Wasserstands in den Dampfseparatoren wurde die Speisewasserzufuhr erhöht. Dies führte jedoch zu weiterer Unterkühlung und Abnahme des Dampfblasengehalts, welches wiederum durch Stabausfahren kompensiert wurde. In den folgenden Minuten versuchten die Operateure durch Regulierung der Speisewasser- und Turbinendampfzufuhr Wasserstand und Druck zu stabilisieren. Beide Parameter hätten zu einer Reaktorschnellabschaltung geführt; entsprechende Warnanzeigen wurden jedoch blockiert. Der Reaktor befand sich zu diesem Zeitpunkt in einem äußerst instabilen Zustand, in dem jede kleinste Veränderung eines Parameters schwerwiegende Folgen haben konnte.

    01:23: Der eigentliche Test begann. Das Haupteinlassventil der Turbine wurde geschlossen und somit dem Generator, dessen Auslaufenergie man messen wollte, die Kraftzufuhr genommen. Dadurch wurde die Wärmeabfuhr aus dem Reaktor unterbrochen, die Temperatur stieg an und Kühlmittel verdampfte.

    Im Gegensatz zu Leichtwasserreaktoren westlicher Bauart, in denen das Kühlmittel gleichzeitig Moderator ist, haben Reaktoren des RBMK-Typs im unteren Leistungsbereich einen positiven so genannten Dampfblasenkoeffizient (Voidkoeffizient). Das bedeutet, dass mit zunehmendem Verdampfen des Kühlmittels die Reaktivität des Reaktors steigt.

    Genau das geschah auch hier. Der dadurch wachsende Neutronenfluss bewirkte einen verstärkten Abbau der im Kern angesammelten Neutronengifte (insbesondere Xe-135). Dadurch stiegen Reaktivität und Reaktorleistung immer schneller an, wodurch wieder größere Mengen Kühlmittel verdampften. Die Situation geriet langsam außer Kontrolle. Um 01:23:35 löste der Schichtleiter manuell die Notabschaltung des Reaktors aus.

    Dazu wurden alle zuvor aus dem Kern entfernten Steuerstäbe wieder in den Reaktor eingefahren, doch hier zeigte sich ein weiterer Konzeptionsfehler des Reaktortyps: Durch die an den Spitzen der Stäbe angebrachten Graphitblöcke (Graphit war der Hauptmoderator des Reaktors) wurde beim Einfahren eines vollständig herausgezogenen Stabs die Reaktivität kurzzeitig erhöht, bis der Stab tiefer in den Kern eingedrungen war.

    Die durch das gleichzeitige Einführen aller Stäbe (über 250) massiv gesteigerte Neutronenausbeute ließ die Reaktivität so weit ansteigen, bis schließlich (um 01:23:44) die prompten Neutronen alleine (also ohne die verzögerten Neutronen) für die Kettenreaktion ausreichten („prompte Kritikalität“) und die Leistung innerhalb von Millisekunden das Hundertfache des Nennwertes überschritt („nukleare Leistungsexkursion“).

    Die Hitze verformte die Kanäle der Regelstäbe, so dass diese nicht weit genug in den Reaktorkern eindringen konnten, um ihre volle Wirkung zu erzielen, und sie ließ die Druckröhren reißen und das Zirkonium der Brennstäbe mit dem umgebenden Wasser reagieren. Wasserstoff entstand in größeren Mengen und bildete mit dem Sauerstoff der Luft Knallgas, das sich vermutlich entzündete und zu einer zweiten Explosion (nur Sekunden nach der „nuklearen Exkursion“) führte.

    Welche Explosion zum Abheben des über 1.000 Tonnen schweren Deckels des Reaktorkerns führte, ist nicht ganz klar. Außerdem zerstörten die Explosionen das (nur als Wetterschutz ausgebildete) Dach des Reaktorgebäudes, sodass der Reaktorkern nun nicht mehr eingeschlossen war und direkte Verbindung zur Atmosphäre hatte. Der glühende Graphit im Reaktorkern fing sofort Feuer. Insgesamt verbrannten während der folgenden 10 Tage 250 Tonnen Graphit, das sind etwa 15 Prozent des Gesamtinventars.

    Große Mengen an radioaktiver Materie wurden durch die Explosionen und den anschließenden Brand des Graphit-Moderators in die Umwelt freigesetzt, wobei die hohen Temperaturen des Graphitbrandes für eine Freisetzung in große Höhen sorgten. Insbesondere die leicht flüchtigen Isotope Iod-131 und Cäsium-137 bildeten gefährliche Aerosole, die in einer radioaktiven Wolke teilweise hunderte oder gar tausende Kilometer weit getragen wurden, bevor sie der Regen aus der Atmosphäre auswusch. Radioaktive Metalle mit höherem Siedepunkt wurden hingegen vor allem in Form von Staubpartikeln freigesetzt, die sich in der Nähe des Reaktors niederschlugen.

    Gegen 05:00 waren die Brände außerhalb des Reaktors gelöscht. Block 3 wurde abgeschaltet.

    27. April 1986: Die Blöcke 1 und 2 wurden um 01:13 bzw. 02:13 abgeschaltet. Es wurde begonnen, den Reaktor mit Blei, Bor, Dolomit, Sand und Lehm zuzuschütten. Dies verringerte die Spaltproduktfreisetzung und deckte das brennende Graphit im Kern ab.

    Am 6. Mai 1986 wurde die Spaltproduktfreisetzung weitgehend unterbunden.


    Alle drei noch funktionsfähigen Blöcke wurden nach dem Ende der Aufräumarbeiten wieder hochgefahren. Der zweite Reaktorblock wurde im Oktober 1991 nach einem Feuer in der Turbinenhalle abgeschaltet. Block 1 folgte im November 1996, Block 3 am 15. Dezember 2000. Die Abschaltung erfolgte insbesondere auf Druck der Europäischen Union, die Ukraine erhielt dafür entsprechende Ausgleichszahlungen. Die Abschaltung der Blocks von Tschernobyl ist insbesondere auch aufgrund der durch die vom russischen Gasprom-Konzern angeordnete vorübergehende Sperrung der Gasversorgung für die Ukraine Anfang 2006 im Land sehr umstritten, die dem wirtschaftsschwachen Land seine Energiekrise vor Augen führte. Die europaweite Kältewelle Ende Januar/Anfang Februar 2006 forderte in der Ukraine über 800 Kältetote.

    Der havarierte Reaktorblock ist heute durch einen provisorischen, durchlässigen "Sarkophag" gedeckelt. Im Inneren ist weitgehend die Situation vom Zeitpunkt der Katastrophe in heißer Form konserviert. Von rund 190 Tonnen Reaktorkernmasse befinden sich Schätzungen zufolge noch rund 150-180 Tonnen im Gebäude, teils in Form geschmolzener und erstarrter Brennelemente aus Uran, Plutonium, Graphit und Sand (es wird auch Elefantenfuß genannt), teils in Form von Staub und Asche, in Form ausgewaschener Flüssigkeiten im Reaktorsumpf und Fundament oder in anderer Form.

    Der internationale „Shelter Implementation Plan“ hat als Ziel, einen neuen haltbaren Sarkophag zu errichten. Als erste Maßnahme wurden das Dach des ursprünglichen Sarkophags verstärkt und die Belüftungsanlage verbessert. Der neue Sarkophag soll über dem alten errichtet werden. Dadurch soll es möglich sein, den alten Sarkophag zu entfernen, ohne dass weitere radioaktive Stoffe freigesetzt werden.

    • Offizieller Beitrag
    Zitat

    der bisher größte nukleare SuperGAU der Menschheitsgeschichte


    Das stimmt so nicht ganz. Wenn man sich folgendes Diagramm des deutschen Wetterdienstes ansieht, merkt man, dass die überirdischen Atombombentests in den 50er und 60ern, weit mehr radioaktives Material freigesetzt haben, als Tschernobyl 1986.

    • Offizieller Beitrag

    Zunächst mal danke für die Erläuterung. In der Detailtreue habe ich das bisher noch nirgends gelesen... :jeah:

    Normen: Du schreibst vom deutschen Wetterdienst. Sind die Messungen in Deutschland gemacht und gemittelt worden oder ist das das Mittel über "der ganzen Erde" ?

    • Offizieller Beitrag
    Zitat

    Das stimmt so nicht ganz. Wenn man sich folgendes Diagramm des deutschen Wetterdienstes ansieht, merkt man, dass die überirdischen Atombombentests in den 50er und 60ern, weit mehr radioaktives Material freigesetzt haben, als Tschernobyl 1986.

    Ich würde behaupten dass man da etwas differenzieren müßte...

    Atombombentests wurden in abgelegenen Gebieten durchgeführt, zumindest meistens. Es wurden demnach relativ wenige Menschen in Mitleidenschaft gezogen obwohl die ausgestoßene Radioaktivität in der Summe sehr viel höher war.

    In Tschernobyl war es leicht anders.

    Die Wolke zog zum Teil über dichtbesiedelte Gebiete und hatte bestimmt deutlich verherendere Auswirkungen auf die Bevölkerung. Allein von den 600000 Liquidatoren die den geschmolzenen Reaktor versiegeln sollten sind bis jetzt nach offiziellen Schätzungen 20000 bis 50000 an der Strahlung gestorben. Die Dunkelziffer dürfte deutlich höher liegen...

    • Offizieller Beitrag
    Zitat

    Normen: Du schreibst vom deutschen Wetterdienst. Sind die Messungen in Deutschland gemacht und gemittelt worden oder ist das das Mittel über "der ganzen Erde" ?


    Nein, das sind Messungen in Deutschland. Genauer gesagt, der Mittelwert der 40 über Deutschland verteilten Messstellen.

    Zitat

    In Tschernobyl war es leicht anders.


    Natürlich sind in Tschernoby weit mehr ums Leben gekommen oder haben gesundheitsschädliche Strahlenmengen abbekommen.
    Trotzdem hat mich die Statitik oben ein bisschen überrascht.

    • Offizieller Beitrag
    Zitat

    Trotzdem hat mich die Statitik oben ein bisschen überrascht.


    Mich auch, wenn es sich um deutsche Meßstellen handelt.
    Bei Tschernobyl war der Wind bzw. die Wetterlage so ungünstig, dass wir heute noch in den bayrischen Wäldern verstrahlte Pilze ernten.
    Die anderen Tests von Frankreich und USA waren weit, weit weg und wären nach meiner naiven Einschätzung eher über die oberen Luftmassen in der Äquatoerregion verteilt worden.

    • Offizieller Beitrag

    Die Statistik kommt mir so überraschend gar nicht vor, eher noch fast harmlos wenn man bedenkt was die Amis, Russen, Kanalwackes, Engländer, ... alles verblasen haben...

    Erschreckend finde ich z.B. den Größenwahnsinn der Russen eine 57 Mega Tonnen Wasserstoffbombe zu bauen und irgendwo in der Tundra zu zünden. 4 mal so stark als alles was die Amis jemals zündeten und 4000 mal so stark als das was auf Hiroshima nieder ging. Gottseidank sind die dann doch noch "einigermaßen" vernünftig geblieben, denn mir wurde erzählt dass die Zar Bombe ursprünglich als 4 stufige 150 Mega Tonnen Wasserstoffbombe geplant war, wobei jedoch auf die 4te Stufe aus Angst vor dem möglichen Fallout verzichtet wurde...

    Irgendwie ist es schon ein Wunder dass wir nicht bereits einen nuklearen Winter miterleben mussten...

    • Offizieller Beitrag
    Zitat

    Bezieht sich das also nur auf Beta Strahlung?


    Ja. Scheinbar mist man anhand der Beta-Strahlung die Folgen radioaktiver Schäden. Die anderen beiden könnten wohl auch noch woanderst herkommen (kosmische Strahlung) und das Ergebnis verfälschen.
    Richtig, die gesamte Strahlendosis ist wohl noch linear um einen Faktor größer.

    • Offizieller Beitrag
    Zitat

    Alpha- und Gammaanteil würden dann ja fehlen...


    Als 1986 Tschernobyl hochging, wurde in Bayern ja allgemein "Beruhigung" versendet. Laut unserem bayerischen Innenminister ist/war absolut keine Gefahr für Mensch, Tier und Pflanzen zu befürchten. Den Salat aus dem Garten sollte man einfach ein bißchen abwaschen..... Damals war's aber so (soweit ich mich noch erinnern kann), dass die Alpha-Strahlung extrem hoch war und dann nach ein paar Tagen zurückging.
    Somit wäre eine Erfassung der Alpha-Strahlung in einer Statistik ein bißchen "Stecknadel im Heuhaufen". (Oder man machts auf die Statistik-Methode und glättet die Tageswerte über den Monat. Dann gibts Werte, über die sich die Politiker wieder freuen.)

  • naja .. die alphastrahlung kann man eigendlich auch vernachlässigen
    ein dickeres blatt papier schützt einen davor.
    betastrahlung geht auch noch aber es sind immerhin schon freie elektronen die auch ohne weiteres ein stück in den körper kommen bevor sie schaden anrichten (röntgenstrahlen erzeugt).

    richtig problematisch werden die erst wenn die im körper entstehen wie es der fall ist wenn man radioaktives materianl in sich aufnimmt.
    denn alpha und betastrahlen haben nicht wirklich so ne riesige reichweite.

    Lösungen sind Probleme in Arbeitskleidung